

Rogues Gallery VIP - Quantum Computing - Spring 2025

Noah Dillard, Bishop Glover, Stephen Katz, Melody Lee, Krish Prasad, Tanush Prat<u>hi, Erica Wang, Francis Wu</u>

Kev Research Questions

- How can we develop a circuit generator using machine learning (ML) that minimizes noise?
- How can we leverage simulations data for this purpose?
- What are the limits of quantum simulations?
- How may we explore noise mitigation and error correction techniques?

Semester Goals

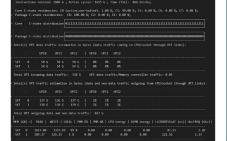
Following up with simulation work, the team seeks to continue delving deeper and achieve outcomes in four key areas. Namely,

- 1. Data pipeline: method to generate randomized circuits.
- 2. Data collection and analysis: Further investigation of the types of data collected.
- 3. Quantum simulations: Create more quantum simulation algorithms
- 4. Benchmarking: Identify bottlenecks in quantum

Limitations in Quantum Computing Quantum computing bottlenecks in [1]:

- Read-in and read-out cost
- Resource constraints and error ← subteam focus

Motivations


- Understanding GPU and CPU performance on simulations gives upper bound for classical performance.
- Understanding error types and mitigation techniques increases coherence of information obtained from quantum computer.
- Underlies goal to make realization of quantum advantage possible.

Benchmarking/Simulations

- Finalized implementations of Qiskit benchmarking algorithms
- Created scripts for scaling problem size
- Refactored algorithm implementations for ease of use
- Completed environment set-up for usage measurement libraries
- DCGMI and NVIDIA-SMI support
- Set up Intel PCM resource monitoring
- Collected initial CPU utilization measurements for

Bernstein-Vazirani and Simon's Algorithms

- Directory permission issues
- Heterogeneous hardware, OS and software compatibility
- Resolving CUDA and cuQuantum environment issues for simulations

Challenges

- Unable to perform simulations using GPU
- Scattered work environments
- Limited number of gubits with simulation of Simon's Algorithm due to memory limitations
- Variation in error in data obtained limited viability

Future Work

- New project directions
- Exploration of IBM error models
- Add new research question: impact of different types of error on circuit performance?
- Example error models on Qiskit: coherent unitary error, phase damping error models
- Leveraging resources
- Q: Access to QCUPS?
- Explore different hardware types
- Investigate error rates on different hardware
- Using a myriad of different benchmark algorithms

Exploring Error Mitigation with Machine Learning

Updates to Data Pipeline

- Parquet unpacking script: parquet file → (unpacking) circuit results from IBM
- Random circuit generator: test distribution of noise over random circuits **Exploratory Project:**

Objective: Given | w \ devise II such that

- Ideal circuit: U|ψ⟩ = b
- Noisy circuit: $U^*|\psi\rangle = b^*$

We select $U=X\setminus Z$ Such that $U^{2k}=I$. We tested the error rates for 2k=16,...,100 to see if it would be possible to calculate a matrix M so that $MU^{2kc}|\psi\rangle=Ib$.

Conclusion: Not viable for hardware error with randomness.

Response: Pivot to slightly different project focused on error for future semesters.

References

[1] Aaronson, S. (2015). Read the fine print. Nature Physics, 11(4), 291-293.